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The steady, incompressible, isothermal, developing flow in a square-section curved 
duct with smooth walls has been investigated. The 40 x 40mm duct had a radius 
ratio of 2.3 with long upstream and downstream straight ducts attached. Measure- 
ments of the longitudinal and radial components of mean velocity, and corresponding 
components of the Reynolds-stress tensor, were obtained with a laser-Doppler anem- 
ometer at a Reynolds number of 4 x lo4 and in various cross-stream planes. The second- 
ary mean velocities, driven mainly by the pressure field, attain values up to 28 yo of 
the bulk velocity and are largely responsible for the convection of Reynolds stmsses 
in the cross-stream plane. Production of turbulent kinetic energy predominates close 
to the outer-radius wall and regions with negative contributions to the production 
exist. Thus, at  a bend angle of 90' and near the inner-radius wall, uszcraU,/& is 
positive and represents a negative contribution to the generation of turbulent kinetic 
energy. 

In spite of the complex mean flow and Reynolds stress distributions, the cross- 
stream flow is controlled mainly by the centrifugal force, radial pressure gradient 
imbalance. As a consequence, calculated mean velocity results obtained from the 
solution of elliptic differential equations in finite difference form and incorporating a 
two-equation turbulence model are not strongly dependent on the model; numerical 
errors are of greater importance. 

- 

1. Introduction 
Flow in a curved duct is characterized by a stress field with stabilizing effects near 

to the inner-radius wall and destabilizing effects close to the outer radius wall. These 
effects, and the related turbulence features, have been considered by Bradshaw (1973) 
for two-dimensional, boundary-layer type flows but as indicated by Johnston (1976), 
little work has been directed to confined curved-duct flow. This lack of information 
exists in spite of the relevance of confined curved flows to  bends, headers, alternator 
cooling ducts and the blade passages of compressors and turbines. A review of engineer- 
ing design information of relevance to bends has been provided by Ward-Smith 
(1971) but does not offer substantial contributions to the understanding of flow 

0022- 1120/81/4677-3570 $02.00 @ 1981 Cambridge University Press 

15 F L M  103 



444 

mechanisms. More recently Mori et al. (1971) and Pratap & Spalding (1975) have made 
experimental contributions but, in common with many previous investigations of 
three-dimensional curved-duct flows, these are limited mainly to Pitot-tube measure- 
ments and, therefore, substantially to the determination of longitudinal mean 
velocity. Pierce & Duerson (1975) using hot-wire anemometry techniques have meas- 
ured components of the Reynolds-stress tensor in an end wall three-dimensional 
channel boundary layer but these are of limited extent. 

A major reason for the lack of detailed information of curved-duct flow stems from 
measurement difficulties which have been partly removed by the development of 
laser-Doppler anemometry. Humphrey, Taylor &, Whitelaw (1977), in a previous 
investigation of a laminar flow in the present bend, made use of a laser-Doppler anem- 
ometer to measure the longitudinal component of mean velocity. This study followed 
an earlier investigation of developing turbulent flow in a square duct by Melling 
& Whitelaw (1976) and provides the basis for the precise measurement of two com- 
ponents of mean velocity and the corresponding normal and Reynolds stresses in the 
same rectangular curved duct at  a Reynolds number corresponding to turbulent flow. 

Significant contributions to the understanding of curved-duct flows have been 
made through the solution of reduced forms of the Navier-Stokes equations. Solutions 
of the ideal, rotational-flow equations have been obtained, for example, by Rowe (1970) 
and Stuart & Hetherington (1970) and exhibit relatively strong oscillatory secondary 
flows of the type investigated earlier by Squire & Winter (1951) and Hawthorne 
(1951). The laminar flow solutions of the steady, three-dimensional, Navier-Stokes 
equations of Ghia & Sokhey (1977) and of Humphrey et al. (1977) for rectangular 
cross-sections and of Humphrey (19784 for circular and annular cross-sections also 
demonstrate strong secondary flows. The latter two studies are based on elliptic forms 
of the transport equations and reveal, for a range of Reynolds numbers, that recircula- 
tion in the main flow direction can be present. Turbulent flow results have been 
obtained, for example, by Patankar et al. (1975) and Pratap & Spalding (1975), by 
solving parabolic forms of the transport equations. Thus, these authors presumed that 
recirculation in the planes parallel to the symmetry plane does not exist and that the 
flow can be represented by a two-equation turbulence model. In all cases, there is a 
need for experimental information to test the appropriateness of the assumptions and 
to help remove the present lack of understanding of the physical processes, especially 
in ducts of strong curvature. 

In an earlier communication, Humphrey & Whitelaw (1977) presented preliminary 
results and brief discussion related to flows over curved surfaces and in bends. The 
purpose of the present contribution is to provide detailed measurements, of quantified 
and good precision, which will increase present understanding of the physical processes 
governing curved duct flows. This is partly achieved here by comparison of experi- 
mental results with elliptic calculations based on a two-equation (k - E )  model of 
turbulence. Although, as will be shown, the numerical uncertainties are significant and 
probably greater than those introduced by the turbulence model. 

The following section describes the flow configuration and the instrumentation 
used to obtain the measurements. The results, including those obtained from the 
calculation method outlined in Appendix A and previously described, in relation to 
laminar-flow equations, by Humphrey et at. (1977), are presented in the third section 
and discussed in the fourth. The paper ends with brief concludmg remarks. 

J .  A .  0. Humphrey, J .  H .  Whitelaw and G. Yee 
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FIGURE 1. Experimental geometry of 90' bend with tangents. 

2. Flow configuration, instrumentation and procedures 
The flow configuration is identical to that used by Humphrey et al. (1977). It com- 

prises a 90" perspex bend of mean radius R, = 92mm, see Figure 1, attached to the 
end of a rectangular channel previously described by Melling & Whitelaw (1976). 
The cross-section was 0 2  = 40 & 0.05 x 40 f 0.05 mm2 and the bend was located in the 
vertical plane with a 1.2 m length of straight duct of the same cross section attached 
to its downstream end. The present results were obtained with a water flow of 1.42 kg/s 
corresponding to a Reynolds number of 4-0 x lo4 and a Dean number of De = 
Re(gD/R,)* = 2.6 x lo4. 

The anemometer was similar to that described in the two previous papers. It was 
aligned perpendicularly to the side walls of the bend and comprised a 5 mW helium- 
neon laser, an optical unit of the type described by Durst & Whitelaw (1971) but 
modified to allow rotation of the measuring volume through 90" without the need to 
adjust the position of the laser, a light collection arrangement, an EM1 9558B 
photomultiplier and a frequency-tracking demodulator (DISA 55L20). The mean 
velocity, after true integration (DISA 55B30), and corresponding normal stress were 
obtained from a Solartron digital voltmeter and true rms meter (DISA 55D35), 
respectively. The control-volume dimensions were determined by the 15' angle 
between the transmitted light beams and the light-collection arrangement and were 
calculated to correspond to  a length of 2-0 mm and a diameter of 0.26 mm; the discrim- 
ination level of the frequency-tracking demodulator reduced these dimensions, 
according to a count of fringes reproduced by scattering particles on an oscilloscope, 
by approximately 20 yo. 

Measurements of the longitudinal and radial components of mean velocity and the 
corresponding normal and Reynolds stresses were obtained with the single channel 

15-2 
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Maximum error % 
r 

Variable Systematic Random 

UeIUB, U z l u B  0-8 1 .o 
ur I UB 1.0 2.0 
c@l UB, 6 ~ 1  UB 1 -0 2.0 
crl U B  1-7 2- 8 
usucl v"B 2.2 5.0 

TABLE 1 

anemometer in the manner described by Humphrey (1977) and Durst, Melling C 
Whitelaw (1976). On average 12 traverses of 25 points each were made in planes 
corresponding to - 11.1, - 6.25 and - 2.5 hydraulic diameters in the straight duct 
and at O", 45", 71" and 90" in the bend. The cross-stream velocity and corresponding 
stresses were also measured in the 0" and 90" planes. 

The influence of transit-time, gradient and noise broadening were examined and, 
as far as possible, quantified. The estimated maximum systematic and r.m.8. of the 
random errors are indicated in table 1. The large number of measured points allowed 
them to be conveniently fitted to a least-squares polynomial of the form: 

Uor Q = A ,  + A ,  y+A2z+A3y2+A4yz+A5z2  + A ,  y3 

+ A,y% + A,yz2 + A 923 + . . . . 
The theory underlying this approach has been reported, for example, by Himmelblau 
(1970). The maximum deviations of measured points from the fits used to plot the 
figures of the following section, were 2% for mean velocities and 3 %  for Reynolds 
stresses and occurred in the flow regions close to the walls. The results on both sides 
of the bend symmetry plane were compared at all measurement stations and indicated 
random asymmetries only slightly larger than the uncertainty introduced by the 
fitting procedure; as a consequence, the data on the two sides were averaged and the 
regression applied to a symmetrical half. 

3. Results and comparisons 
A typical set of measurements is shown on figure 2 and represents values of the mean 

voltage and r.m.s. of the corresponding fluctuations in the 45" plane. Contours of 
mean velocity and Reynolds stress were obtained from a knowledge of the relationship 
between the measured voltage and velocity and the fitting procedure described in the 
previous section; they are presented in figures 3-1 1 for five of the seven measurement 
stations. Figures 3 to 7 relate to the longitudinal velocity component, figures 8 and 9 
to the radial component and figures 10 and 11 to the shear stress. For comparison and 
discussion purposes calculated contours of mean flow properties, where appropriate, 
have been included in the figures. 

3.1. Mean velocities 
The measurements of longitudinal mean velocity obtained at  - 11.1, - 6-25 and 
- 2.5 hydraulic diameters from the entrance plane of the bend are within 5 % of the 
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results previously reported by Melling & Whitelaw (1976) for Re = 4.2 x 104 and at 
36.8 hydraulic diameters from the inlet to the present straight duct. The measure- 
ments at xR = -2.5, shown on figure 3, correspond to a location 42.5 hydraulic 
diameters from the duct inlet and have the general features of developed square-duct 
flow with no influence of the downstream bend. This is in contrast to the laminar-flow 
results of Humphrey et ol. (1977) which were slightly influenced by the bend at x, = 
- 2.5. The bulging of the present contours towards the corners of the duct is caused 
by the normal-stress driven cross-stream flow ( < 0.02 U,) previously discussed, for 
example, by Gessner (1973) and Melling & Whitelaw (1976). This weak cross-atream 
flow is in the form of symmetric counter-rotating vortices in the duct corners and 
directed along the angle bisector towards the corner; it  will be overcome by the 
much stronger pressure-driven secondary flow in the bend which takes the form of 
two counter-rotating longitudinal (main) vortices with a forward stagnation region 
at the centre-line of the outer wall. 
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FIQURE 2. Experimental data at 45' station in turbulent bend flow. Results are typical of the 
degree of symmetry obtained in the flow. (a) Longitudinal velocity given in volts measured, 
(b) Longitudinal turbulence intensity given in volts measured. Values of (T - r J / (  T, - ri) : A, 0-92; 
.,0.84; 0,  0.76; 0 ,  0.67; A, 0.59; 0, 0.61; 0,  0.43; 0, 0.35; A, 0.26; 0, 0.18; 0,  0.10. 

At the inlet plane of the bend, figure 4(a ) ,  the mean longitudinal velocity contours 
( Ue/UB)  display an acceleration of the fluid moving near the inner-radius wall (ri)  in 
accordance with the initially favourable longitudinal pressure gradient there. Simul- 
taneously, the fluid moving near the outer-radius wall (r,,), responding to an initially 
unfavourable longitudinal pressure gradient, is decelerated. The longitudinal pressure 
gradient influencing the flow entering the bend is a consequence of the centrifugal 
force, radial pressure-gradient balance set up by the flow in the bend. Bulging of the 
U ,  contours towards the duct corners persists at  the 0" plane but has been substantially 
reduced at  the outer-radius wall, in accordance with the negative values of U, over 
almost the entire cross-section as shown in figure 8 (a). The effect of U,  is, therefore, to 
oppose normal stress-driven motion a t  the outer-wall corners of the bend and to 
favour it at the inner-wall corners. 



Turbulent jlow in a square duct with strong curvature 

(a) ri 
I I I I I I 

449 

r0 -012  r0 -012 
FIGURE 3. Turbulent bend flow; XH = - 2.5. (a) Contours of U J  UB.  (a) Contours of (O,/ UB)  x 108. -- 

L * 2 -  
I I 1 

r0 -D 12 TO 
-012  

FIGURE 4. Turbulent bend flow: 0 = Oo, (a) Contours of U,/ UB. ( b )  Contours of (GO/ U B )  x loa. 
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FIUURE 5. Turbulent bend flow; 8 = 45'. (a)  Contours of U, I UB with calculations on right-hand 
side. ( b )  Contours of (l ie/  V B )  x loz. 

( b )  
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FIGTJRE 6. Turbulent bend flow; 0 = 7 lo. (a) Contours of U,/ UB with calculations on right-hand 
side. ( b )  Contours of (t&/ UB) x loz. 



Turbulent j b w  i n  a square duct with strong curvature 451 

-012 ro +0/2 -012  r0 

FIGURE 7. Turbulent bend flow; 0 = 90". (a) Contours of Uol UB with calculations on right-hand 
side. ( b )  Contours of (i&/ US) x 103. 

FIGURE 8. Turbulent bend flow; 0 = 0". (a) Contours of U , / U g .  ( b )  Contours of (Cp/ UB) x lo*. 
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I I I I I I 1 I I I 
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FIGURE 9. Turbulent bend flow; 0 = 90". (a) Contours of U,/ U B  with calculations on right-hand 
side. (a) Contours of (&lug) x loa. 

FIQURE 10. 

I I I I I 1 
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Turbulent bend flows; B = Oo. Contours of (UgPlr/Uag) x 1v. 
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FIGURE 11. Turbulent bend flom for 6 = 90". Contours of (er /ui )  x 108. 

Acceleration of the fluid near r, displaces the maximum U, velocity contours 
towards the inner-radius wall and the effect is still noticeable at the 45" station shown 
in figure 5(a) with steep gradients of U ,  appearing near ri. The distorted contours for 
U , / U ,  = 1-20 and 1-25, which arise in both laminar and turbulent bend flows as a 
result of the pressure gradient in the secondary flow plane induced by lateral curvature 
of the main flow, are evidence of developing pressure-driven secondary motion. At 
71" and go", figures 6 (a) and 7 (a), the strong secondary motion (up to  0.28 x U, at the 
90" plane) produced by the lateral curvature, causes a substantial deformatibn of the 
U, contours. The steep gradients in U ,  shift from ri to r, with lower gradients appear- 
ing at  the inner-radius wall. The results also show that high-speed flow has been 
increasingly displaced towards the outer-radius and side walls, whereas fluid with low 
velocity accumulates at the inner-radius wall of the bend. 

The contours of radial velocity obtained in the inlet plane to the bend are shown 
on figure 8(a )  and reveal secondary velocities up to 0.076 U,. These values are 
significantly larger than those associated with normal-stress-driven secondary flows 
and confirm the influence of the bend on the flow at the inlet. The vortex pattern, 
associated with normal-stress-driven secondary flows is no longer apparent although 
the sign changes, near to the inner and outer walls, indicate that it has not been com- 
pletely overcome by the pressure forces. At go", figure 9 (a), large secondary flows are 
present and the pattern conforms to a strong rotational movement in each symmetrical 
half of the bend with values of U,  as large as + 0.28 U, along the symmetry line and 
- 0.15 U ,  along the side walls. 
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The velocity contours, calculated at the three downstream stations display the 
same general characteristics as the measurements but with quantitative differences 
which are large. The contours of the longitudinal velocity component indicate a shift 
of maximum velocity which, like the measurements, is displaced slightly towards the 
inner wall at 45' and moves towards the outer wall for larger values of angular position. 
The movement is rather more rapid than the measurements and there is a general 
tendency for the velocity gradients to be less except in the immediate vicinity of the 
walls where the logarithmic wall functions control the calculations. It would appear, 
therefore, and consistent with the distribution of grid nodes in the cross-stream plane 
as shown in figure 5,  that there has been some smearing in the numerical results. 

It is also noticeable, at the 45" position, that the secondary flow has been slower 
to develop in the calculations than in the measurements. The tendency for the con- 
tours to bend into the corners, shown by the measurements, is not revealed by the 
calculations until the 71" station. The main features of the radial component of mean 
velocity, shown in figure 9, are represented by the calculation although the location 
of the zero-velocity line dividing the regions of positive and negative velocity is 
further from the side wall, the magnitude of the negative values is high and of the 
kinetic values too low. 

3.2. Reynolds stresses 
Turbulence intensities and shear stress measurements (normalized by Uk) are pre- 
sented in contoured form in figures 3 ( b )  to 9 ( b )  and 10 and 11, respectively. As for 
the mean longitudinal velocity component, the pattern in the distribution of Q, did 
not change significantly between xH = - 11-1 and - 2-5 and the values for C, are in 
good agreement with the measurements of Melling & Whitelaw (1976) a t  their furthest 
downstream position. 

In general, the results at the three upstream tangent stations (see figure 3b)  show 
high values of Q, near the duct walls, diminishing towards the core region of the flow. 
Distortions by the normal stress driven secondary motions are evidenced (as for U,) 
by bulging of the contours towards the duct corners. At O", 4 8  has been affected little 
by the pressure gradients affecting the longitudinal and transverse mean velocities 
although a slight diminution in the .ii, contours near r,,, relative to those a t  ri, can be 
observed and is caused by the same mechanism which reduced bulging in the U, 
contours. 

At 45", figure 5 (b)  shows a dramatic alteration in the pattern for C,. Relatively high 
levels of turbulence intensity (12 % to  15 %) arise near ro and the side walls with lower 
values (6 yo to 9 yo) appearing near ri except nearer to the inner-radius wall. At 71", 
the pattern is modified further with .ii, returning to lower values (10 yo to 12 Yo) near 
to r ,  and the side walls b u t  increasing (8 yo to 11 yo) near to r,. At go", a complete 
reversal of the situation observed at  45' has emerged; values of .ii, are relatively large 
(12 yo to 15 yo) at the inner-radius wall, whereas they are lower (10 yo to 13 yo) near 
ro and the side walls. The general patterns for at 45", 71' and 90" are seen to be 
in conformity with the sense of circulation in the secondary motion of the fist kind 
which increases in magnitude along the bend. This appears to suggest that convection 
of the Reynolds stresses by the cross-stream flow becomes increasingly significant 
with distance through the bend. 

Contour plots of G,, at 0" and 90" are presented in figures 8 (b )  and 9 (b )  and although 
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the trends at  0" are in agreement with those of Melling & Whitelaw (1976) at the furth- 
est downstream position of their square duct flow, differences can be observed. In the 
present case, two islands of relatively high turbulence intensity (8.5 yo) have been 
formed at the side wall (near Ti) and near the bend symmetry plane (near ro) respec- 
tively. These peaks are joined by a 7.5 yo ridge separating two regions of lower tur- 
bulence intensity with strong gradients appearing towards the walls. At go", the 
Cr profiles indicate a distortion which appears to stem from the strong secondary 
motion there. 

Figures 10 and 11 present the shear stress contours uZr  at  0" and 90" respectively. 
A t  0", the contours in the upper half of the figure (towards ri) present features strongly 
reminiscent of the developed turbulent duct flow results of Melling & Whitelaw (1976). 
The bottom half of the figure, however, is very different and shows a region of negative 
u p r ,  near the side wall, contained between positive values: since this region coincides 
with negative values of aU,/ar, the result is a negative contribution to the generation 
of kinetic energy of turbulence. At 90°, the uiir contours display distortions, caused 
by the secondary motion. Relatively high and positive values of uiir are displaced 
towards ro and the side wall. Lower values of F,, but still mainly positive, appear 
over a large region near ri coinciding with positive values of aUB/ar. As above, this 
represents a negative contribution to the generation of kinetic energy of turbulence 
and is in agreement with the stabilizing effects of the inner-radius wall on the flow. 

The calculated values of turbulence energy in the exit plane are not shown for 
reasons of space but reflect the deficiencies of the mean-flow calculations and of the 
assumed turbulence model. Comparison of the calculations and the measurements of 
figures 7 b and 9b indicates that the former are generally lower and more uniform in the 
central region. The calculated values of the Reynolds shear stresses are also poorly 
represented in detail although major features, such aa the central zero contour of 
uGr, are reproduced. 

- 

4. Discussion 
Comparisons between the present turbulent flow and the previous laminar flow of 

Humphrey et al. indicate that the normalized velocity fields are similar in magnitude 
although the small region of longitudinal recirculation observed in the laminar flow 
does not appear in the turbulent flow. A second difference relates to the locus of 
maximum-velocity locations which, in the turbulent flow case, are close to the centre 
of curvature for the first 71". Secondary motion, a.rising through an imbalance between 
centrifugal force and radial pressure gradient at  the side walls of the bend, displaces 
high-speed fluid towards the outer-radius wall, along the region containing the 
symmetry plane, and low-speed fluid towards the inner-radius wall, i.e. along the side 
walls: this effect is much larger in the turbulent-flow results due to the higher Dean 
number. The secondary motion in the turbulent case is responsible for strong cross- 
stream convection of Reynolds stresses and for high turbulence-energy fluid to be 
driven from the outer-radius wall, where turbulence is generated strongly, towards 
the inner-radius wall, where it can be suppressed. In turn, stabilized flow with lower 
level turbulence energy at  the inner-radius wall is convected, by the secondary motion, 
along the symmetry plane into the core region of the flow and towards the outer- 
radius wdl. Between 45" and go", the characteristics of the turbulent bend flow near 
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to the symmetry plane are similar to those observed in two-dimensional channels 
with curvature. The similarity diminishes, however, at larger bend angles where the 
secondary motion reaches values between 20 % and 30 yo of the bulk average velocity. 
Comparison between present results and two-dimensional channel flow also shows 
that the former are more isotropic than the latter at  the outer-radius wall. Secondary 
motion, driven by normal stresses and important in straight non-circular-duct flow, 
is negligible compared to the pressure-driven secondary flows. 

Stabilizing curvature, occurring on convex walls, i.e. the inner-radius wall of the 
bend, has the effect of lowering Reynolds shear stresses and turbulence energy levels 
in comparison to otherwise equivalent straight shear-layer flows. The results for 
Q, at 45" and Qr and u.sU, at 90" show this effect clearly as do previous results for two- 
dimensional curved flows. The decrease in turbulence is associated with a correspond- 
ing decrease in static pressure in the flow direction and hence acceleration of the flow. 
This is in agreement with the larger levels for U ,  measured near the inner-radius wall 
a t  0" and 45". Destabilizing curvature appears at concave walls, i.e. the outer-radius 
wall of the bend, and results in unusually high levels of Reynolds shear stresses and 
turbulence kinetic energy. This accounts for the relatively large values of the stresses 
a t  the outer-radius wall of the bend. 

The comparison between the better known behaviour of curved two-dimensions1 
channel flow and present experimentd results helps to explain some of the character- 
istics of bend flow. In  the three-dimensional flow, however, the cross-stream vortical 
motion is responsible for the transport of energy containing eddies along the side walls 
of the bend from the concave (destabilizing) to the convex (stabilizing) surface, and is 
partly the cause of the high levels of Reynolds stresses which appear at the side walls. 
In turn, fluid elements in which the turbulence has been suppressed are displaced 
along the bend symmetry plane from the inner-radius wall into the core region of the 
flow by the secondary motion. At the same time, pressure strain redistribution between 
normal stress components, turbulent diffusion and dissipation, all affect the distribu- 
tion of the stresses throughout the flow. A resiilt is for regions of relatively strong 
anisotropy to occur in the bend. For example, at  0" and near the side wa.lls, 
1 < ut/u: < 4 and -0.2 < Z$i,,/u? < 0.4. At 90" and near the inner-radius wall, 
1.6 < ub/u: < 4.6 and 0.1 < E&Lq < 0.5, whereas at  the outer-radius wall, 
0-5 < u$/u: < 1.4 and 0.3 < uii,/ug < 0.4: these results at 90" indicate that the 
flow at the outer-radius wall is more isotropic than that at the inner-radius wall. 
This observation is in agreement with the results of Eskinazi & Yeh (1956) who found 
4 < u$/u: < 5.8 at the inner-radius wall and 3 < uz/u: < 4.4 at the outer-radius wall 
for fully-developed curved two-dimensional channel flow. The comparison also shows 
that a higher degree of isotropy is attained at the outer-radius wall of a fully three- 
dimensional bend flow than at the corresponding wall of a two-dimensional curved 
channel flow. 

Analysis of the Reynolds-stress equations, which include effects due to convection, 
pressure strain, turbulent diffusion and dissipation, would benefit understanding of 
the present anisotropic flow but is hampered by the incompleteness of the measure- 
ments and their precision. A simplified analysis of the generation terms in the normal 
stress equations based on the assumption of local equilibrium conditions near walls 
and provided in detailed form by Humphrey (1977) is in close accord with the meas- 
ured distribution of .ii, a t  0" and go", but not with that of Go at 90" due, in part, to 

- -  
- -  
- -  

- -  - -  
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the neglect of aU,/ae in the analysis. The experimental results indicate that convec- 
tive transport of 3 into the inner-wall region of the bend flow (from the outer and side 
wall locations) increases the level of 4 (at the inner wall region) at a faster rate than 
it is suppressed or dissipated. In  regions where 2 and 3 are suppressed, the Reynolds 
stresses act on the mean momentum gradients to return energy to the mean flow and 
accounts for the displacement between positions of maximum velocity and zero 
shear stress. 

The complexity of the turbulence characteristics of the flow implies that the eddy- 
viscosity hypothesis will give rise to errors. Detailed features, such as negative pro- 
duction and the influence of the individual normal stresses are clearly not represented 
although, for example, .the calculated gradual displacement of the peak value of '12, 
from the outer to inner wall is in accord with measurement. The mean flow is however 
very strongly influenced by the pressure forces and is unlikely to be strongly influenced 
by the turbulence model. In  addition, the representation of the flow by less than 3200 
discrete nodes is bound to give rise to numerical errors which may be large, in com- 
parison with those caused by the turbulence model. The storage requirement of the 
computer limited the number of nodes which could be used with the present program 
and precluded calculations with a more refined grid. Similarly, the extensive run times 
and related costs allowed only a small number of tests with different distributions 
of nodes. 

The calculations for U ,  along the bend symmetry plane (especially near the inner- 
radius wall) do not show the strong influence that secondary motion has on the 
corresponding experimental variables. This discrepancy is certainly related to the 
finite numbers of nodes which result in numerical diffusion in the calculations. An 
estimate of the magnitude of the numerical diffusion, relative to turbulent diffusion, 
may be obtained from the expression 

where R, = Vph/p  is the cell Reynolds number based upon the distance between nodes, 
h, and a is the angle that the velocity vector makes with the co-ordinate system. Cal- 
culated values for pnum/pe f f  show that, contrary to the case for the cross-stream flow, 
longitudinal numerical diffusion was probably significant in the bend. Thus, in the 
main flow direction, valuespnum/,ue,, of up to 6 were obtained near the side and inner- 
radius walls and along the symmetry plane in the bend. These are precisely the 
locations where U ,  and U, disagree most with the measurements. Adjustment of the 
grid nodes to lower the value of cell Reynolds number in this region inevitably 
increased it elsewhere and significant improvements could not be obtained with the 
total number of nodes available. Calculations, with the same initial conditions and a 
turbulent viscosity of zero, gave rise to a similar pattern of results near the inner 
radius; this suggests that, in this region, the numerical diffusion strongly affects the 
present flow. 

It is also possible that the assumed initial conditions may have contributed to the 
discrepancies between measurements and calculations. For this reason,? the calcula- 
tions were repeated with initial conditions assigned at X, = - 3-75 and with depend- 
ent varia,bles corresponding to the fully-developed flow of Melling. The number of 

t As well rn at the suggestion of a referee. 
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nodes in the bend flow was as before and the calculations in the upstream tangent 
were prepared in the same manner as previously reported by Humphrey et al. The 
resulting calculated values of mean velocity were similar, in their general character- 
istics, to those obtained with the initial conditions described in the appendix and 
assigned in the plane of the bend entrance. The discrepancies between the memure- 
ments and calculations were of the same magnitude as those indicated by figures 
4(a), 5(a),  6 ( a )  and 7(a) and there was a tendency for the central region of uniform 
velocity to increase slightly towards the inner wall. 

The numerical deficiencies associated with regions oi the present flow, the limited 
availability of grid nodes and the elliptic differential equations, raise the question of 
the relative advantages of parabolic equations or partially elliptic equations 
[P = P(0, r ,  z) but a2/a02 = 01. The reduced equation forms have reduced storage 
requirements and the number of nodes can be increased significantly with consequent 
decrease in numerical error. Their use implies, however, that longitudinal diffusion is 
unimportant and this cannot always be known a priori. In the laminar-flow results of 
Humphrey et al. (1977), for example, they would have ruled out the possibility of the 
recirculation region observed experimentally. In the present case, the magnitude of 
longitudinal diffusion could not be adequately assessed from the experimental results 
at the 45", 71" and 90" locations in the bend although low values of U, near the inner- 
radius wall suggested that it could be significant. Subsequently, the turbulent flow 
calculations indicated that, even though aP/a0 is large, longitudinal diffusion is not 
larger than 2 % of longitudinal convection in the present geometry. It would appear, 
therefore, that a semi-elliptic procedure accounting for strong pressure variations 
could provide more precise results through increased grid refinement. However, this 
probability will certainly decrease with increasing Dean numbers. 

6. Concluding remarks 
The main effect of the bend on the flow passing through it is to induce strong 

cross-stream motions which develop into a pair of counter-rotating vortices in the 
longitudinal direction. The driving force for this secondary motion is the centrifugal 
force-radial pressure gradient imbalance which acts upon the slowly moving fluid 
along the side walls of the bend, and displaces it along the side walls from the outer to 
inner curvature wall. Continuity requires that a corresponding motion displace 
fluid along the bend symmetry plane from the inner to the outer curvature wall. The 
cross-stream flow is weak at first ( -N 0.07 UB)  but progressively gains momentum until 
it attains values 5 0.28 U ,  at the 90" plane. As a result of the strong cross-stream 
motion, high speed flow accumulates at the outer wall of the bend and low speed flow 
at the inner wall. Likewise, the secondary motion is responsible for cross-stream 
convection of the stresses. This pressure driven cross-stream flow is more than an 
order of magnitude larger than the cross-stream flow which arises due to the normal 
stress imbalances. 

Secondary motion driven by the normal stresses does exist and is responsible for 
bulging of the velocity contours towards the duct corners in the upstream section 
connected to the bend. Its effects are, however, overwhelmed by the pressure-driven 
secondary flow before the 45" station has been reached. 

The results may be compared with the previous laminar-flow data obtained in the 
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same bend at  a lower Dean number. In  the present case, there is no region of longi- 
tudinal flow recirculation although the velocity gradients do indicate a region of low 
wall-shear stress at  the inner-radius wall and in the latter part of the bend. This is 
consistent with the locus of maximum velocity positions which corresponds to  the 
mean radius until the 71" station where it begins to move towards the outer wall. In 
the laminar-flow case, the locus of maximum velocity positions moves rapidly toward 
the outer wall from the beginning of the bend and tends to stay there. It may be 
expected that large differences may exist in the geometric configuration for other 
changes in the initial conditions. For example, the use of a shorter region of the straight 
inlet duct, with corresponding thin boundary layers and a core region of potential 
flow, can be expected to behave in a manner consistent with potential flow solutions 
for a sigmfkant region of the bend. Thus, in such a case, the locus of maximum- 
velocity-positions will move rapidly to the inner wall and will move out again a t  a 
downstream location where the boundary layers have thickened and provided slower 
moving fluid which can be more rapidly driven into a secondary flow pattern. 

In  general, the stress measurements show high values near the walls, w k e  shearing 
is greatest, diminishing towards the core of the flow. Stabilizing effects due to convex 
curvature at the inner wall of the bend are responsible for lowering the turbulence 
intensity there whereas destabilizing concave curvature effects at  the outer wall 
raises it. A consequence of the secondary motion is an interchange of turbulence energy 
between the inner and outer wall; this serves to counteract the stabilizing and destabjl- 
izing effects of these walls, respectively. The result is a highly anisotropic complex 
pattern of stresses. In  agreement with two-dimensional channel flows, the measure- 
ments indicate a higher level of anisotropy at  the destabilizing outer wall than a t  the 
stabilizing inner wall. However, the present bend flow is more isotropic at the outer- 
radius wall than the channel flow. Regions of negative contribution to the kinetic 
energy of turbulence arise at both the 0' and 90" planes and are responsible for return- 
ing energy from the turbulent motion to the mean flow. As a consequence, displace- 
ments between positions of maximum velocity and zero shear stress can arise. 

Eddy viscosity models of turbulence are unable to represent negative contributions 
to the generation of kinetic energy of turbulence. However, because changes in the 
bend flow are governed primarily by pressure gradient effects, an eddy viscosity 
formulation, preferably which allows for transport of turbulence properties, mdy 
adequately allow the description of the bulk features of this flow. Accurate representa- 
tion of the stress distributions will require modelling based on solutions of the Reynolds 
stress equations and the present data will assist evaluation of this approach. 

It should be emphasized that the choice of equation form is important in flows of 
the present type. Although longitudinal diffusion is probably small enough to be 
neglected in the present geometry and, hence, allow the use of semi-elliptic calculation 
schemes, its effects will become increasingly important as the mean radius of curvature 
is decreased or the Dean number increases. The three-dimensional Navier-Stokes 
equations are appropriate to the present flow but, as shown here, their solution is 
subject to numerical inaccuracy which limits the complexity of turbulence model 
which can be justified. A discussion of the relative merits of possible turbulence models 
is probably academic in view of the degree of pressure gradient control and numerical 
uncertainty associated with the finite number of discrete nodes. 



460 J .  A .  C. Humphrey, J .  H .  Whitelaw and G. Yee 

The authors are pleased to acknowledge helpful discussions held with Dr A. Melling 
during the course of the experimental work. Financial support from the Science 
Research Council and Imperial Chemical Industries, Ltd made the experimental study 
possible. Financial support for the numerical calculations was provided by the Division 
of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy 
under contract number W-7405-ENG-48. The authors welcome the opportunity to 
express their appreciation for this support. 

Appendix A 
Equations, boundary conditions and calculation method 

Numerical calculations of the curved duct flow are based on the elliptic form of the 
time averaged Navier-Stokes equations in cylindrical co-ordinates. Thus, for steady, 
incompressible, isothermal flow, the differential equations for continuity and momen- 
tum, with an eddy-viscosity assumption, are given by: 

Continuity 

Momentum 

(pelf r T) 

where 

and peif = ,U +pt N p. 

The turbulent viscosity, pt, is assumed to be determined uniquely by the localvalues 
of density p, turbulent kinetic energy k, and a turbulent length scale 1. At high 
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Reynolds numbers 1 is proportional to kQ/e ,  where E is the rate of dissipation of 
turbulent kinetic energy and thus 

where C,, has the constant value given below. The spatial variation of pLt is determined 
by solving transport equations for k and B in cylindrical co-ordinates, readily derived 
from the general tensor equations given by Bryant & Humphrey (1976), i.e.: 

pt = C,Pk2/€, (5) 

with 

The constants in these equations were taken as C, = 0.09, C,, = 1.47, C,, = 1.92, 
uk = 1.0 and ac, = 1.3, in accordance with the recommendations of Patankar et nl. 
(1975). 

It is required to solve equations 1-7 together with appropriate boundary conditions. 
At the inlet, plane (0 = OO), U ,  and U ,  velocity components were specified from 
measurements of this work. In  the absence of experimental information, Us was set 
to zero and is a good approximation since the cross-stream flow in the bend is initially 
weak. The entrance distribution of k was also estimated from the measurements of 
ut and 3 and was taken proportional to lcQ/l, with 1 a fraction of the duct hydraulic 
diameter. A t  the exit plane (0 = go"), fully developed flow conditions were imposed 
by setting 8/86 = 0 for all variables; this approximation has been discussed by 
Humphrey (1978a) in relation to laminar flow and, for the flow of interest here, is 
adequate since calculations with this condition applied at 0 = 90" and 110" showed 
negligible differences in the mean velocity results at 8 = 90". Along the bend sym- 
metry plane, the condition a/& = 0 was imposed for all variables except U ,  which 
was set equal to zero. 

Zero velocity was assumed on all solid surfaces and the region between the numerical 
node P, closest to the wall, and the wall was bridged by the logarithmic velocity 

- 

7, is the shear stress at the wall, and yp is the distance between the first grid node and 
the wall. The log-law constants were taken as A = 2.39 and B = 5-45 and U p  as the 
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resultant velocity at P, assumed parallel to the wall shear stress. Assuming that 
generation and dissipation of turbulence kinetic energy are in balance in the fluid 
layer between node P and the wall and using the log-law relation yields: 

The near-wall kinetic energy of turbulence, k,,, was found from its normal transport 
equation with diffusion set equal to zero and generation term in accord with the wall 
shear stress (10). The value of the dissipation of kinetic energy near the wall was deter- 
mined by requiring that the turbulence length scale vary linearly with distance from 
the wall. Thus, substitution of ( a U / a ~ ) ~ ,  obtained from (9), into a simplified kinetic 
energy of turbulence equation for the near-wall regions (assuming generation equals 
dissipation) yields the expression: 

The calculation algorithm used to solve the preceding equations is an extension of 
the numerical procedure developed and applied by Humphrey et al. (1977) for the 
prediction of laminar flow in curved ducts of rectangular cross-section. Generalization 
of the procedure to arbitrary orthogonal co-ordinates and its application to developing 
curved pipe flows of strong curvature have been documented by Humphrey (1 9 7 8 4 .  
Information of the transport equations in finite difference form, their numerical 
solution and results for various test cases can be found in the above two references 
and (in more detail) in Humphrey (1 977). A summary of the essential features charac- 
terizing the turbulent flow calculation method is given below. 

The finite difference equations were obtained by integrating the conservation equa- 
tions over volume elements or 'cells' discretizing the flow domain. The velocity 
components, pressure, kinetic energy of turbulence and its rate of dissipation are the 
dependent variables computed on a number of staggered, interconnected grids, each 
of which is associated with a specific variable. The general form of the finite difference 
expressions is given by: 

6 

4p = (x (-1 AI4$+S*)/; 4 (12) 

where #,, (any one of the dependent variables) is solved a t  a position P in the dis- 
cretized flow domain. The -4, coefficients are determined at the cell surfaces and repre- 
sent the combined contributions of convection and diffusion to the balance of 4. 
Other contributions arising from pressure, body forces, etc. (sources or sinks) are 
contained in So. Detailed forms for So in variable property flows are given by 
Humphrey (19783). Solution of the system of finite difference transport equations 
with appropriately differenced boundary conditions is achieved by means of a cyclic 
series of predictor-corrector operations. The method involves using an initial or inter- 
mediate value of the pressure field to solve for an intermediate velocity field. A pres- 
sure correction to the pressure field is determined by bringing intermediate velocities 
into conformity with continuity. After corrections to the pressure and velocity fields 
are applied, the transport equations for kinetic energy of turbulence and its rate of 
dissipation are solved. Within each iteration, various sweeps of the entire flow domain 
are performed in alternate directions perpendicular to the main flow direction. The 
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above steps are repeated until a pre-established convergence criterion is satisfied ; for 
example, that the largest of any of the normalized residuals be less than loF3. 

Numerical computations were performed mainly with an unequally spaced grid of 
14 x 11 x 19 nodes ( r  x z x 0 )  requiring 164 k, words of CDC 7600 computer storage. 
The calculation time per node per dependent variable per iteration was 8 x 10-5 seconds 
and a run with the above node distribution and convergence criteria required 400 
iterations and, as a result, 380s. 

R E F E R E N C E S  

BRADSHAW, P. 1973 Effects of streamline curvature on turbulent flow. AQARDograph 169. 
BRYANT, D. & HUMPHREY, J. A. C. 1976 Conservation equations for laminar and turbulent 

flows in general three-dimensional curvilinear co-ordinates. Imperial College, Mech. Engng 
Rep. no. CHT/76/6. 

DURST, F. & WHITELAW, J. H. 1971 Integrated optical units for laser anemometry. J. Phys. E 4, 
804. 

DURST, F., MELLING, A. & WHITELAW, J. H. 1976 Principles and Practice of her-Doppler  
Anemmetry. Academic. 

ESKINAZI, S .  & YEH, H. 1956 An investigation on fully-developed turbulent flows in a curved 
channel. J .  Aero. Sci. 23, 23. 

GESSNER, F. B. 1973 The origin of secondary flow in turbulent flow along a corner. J. Fluid 
Mech. 58, 1. 

GHIA, K. N. & SOKHEY, J. S. 1977 Lamiliar incompressible viscous flow in curved ducts of 
regular cross sections, Trans. A.S.M.E. I, J .  Fluids Engng 99, 640. 

HAWTHORNE, W. R. 1951 Secondary circulation in fluid flow. Proc. Roy. SOC. A 206,374. 
HI-LBLAU, D. M. 1970 Process Analysis by Statistical Methoda. Wiley. 
HUMPHREY, J. A. C. 1977 Flow in ducts with curvature and roughness. Ph.D. thesis, University 

of London. 
HUMPHREY, J. A. C. 1978a Numerical calculation of developing laminar flow in pipes of 

arbitrary curvature radius. Can. J. Chem. Eng. 56, 151. 
HUMPHREY, J. A. C. 19782, Numerical calculation of variable property flows in curvilinear 

orthogonal coordinates, Can. J. Chem. Eng. 56, 624. 
HUMPHREY, J. A. C., TAYLOR, A. M. K., & WHITELAW, J. H. 1977 Laminar flow in a square duct 

of strong curvature. J. Fluid Mech. 83, 509. 
HUMPEREY, J. A. C. & WRITELAW, J. H. 1977 Measurements in curved flows. Turbulence in 

Intern1 Flows (edited by S .  N. B. Murthy). Hemisphere. 
JOHNSTON, J. P. 1976 Internal flows. I n  Turbulence (ed. P. Bradshaw), Topica in Applied 

Physics, vol. 19. Springer. 
MELLING, A. & WHITELAW, J'. H. 1976 Turbulent flow in a rectangular duct. J. Fluid Mech. 78, 

289. 
MORI, Y., UCHIDA, Y. & UKON, J. 1971 Forced convective heat transfer in a curved channel 

with a square cross-section. Int. 3. Heat Mms  Transfer 14, 1787. 
PATANKAR, S. V., PRATAP, V. S. & SPALDINO, D. B. 1975 Prediction of turbulent flow in curved 

pipes. J. Fluid Mech. 67,583. 
PIERCE, F. J. & DUERSON, S. H. 1975 Reynolds stress tensors in an end wall three-dimensional 

channel boundary layer. Trans. A.S.M.E. I, J .  Fluids Engng 97, 618. 
PRATAP, V. S. & SPALDING, D. B. 1975 Numerical computations of the flow in curved ducts. 

Aero. Quarterly 26, 219. 
ROWE, M. 1970 Measurements and computations o f  flow in pipe bends. J. Fluid Mech. 43, 771. 
SQUIRE, H. B. & WINTER, K. G. 1951 The secondary flow in a cwcade of airfoils in a non- 

uniform stream. J. Aero. Sci. 18, 271. 
STUART, A. R. & HETHERINGTON. R. 1970 The solution of three-variable duct flow equations. 

Proc. Int. Symp. on Fluid Mech. for the Design of Turbomachinmy, Penn. State University. 
W A R D - ~ ~ ~ I T H ,  A. J. 1971 Pressure Losses in Ducted Fb.ws. Butterworth. 




